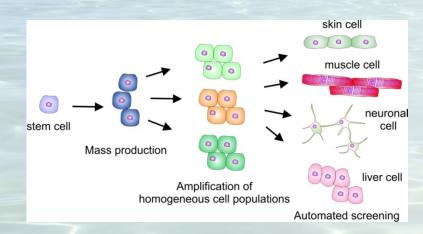

ToxBank Integrated Data Analysis

ToxBank Public Forum Wellcome Collection London, United Kingdom

Barry Hardy (Douglas Connect)

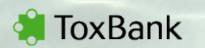
26th October 2015



This project is jointly funded by Cosmetics Europe and the European Commission. Any opinions expressed in these slides are those of the authors. Cosmetics Europe is not liable for any use that may be made of the information contained therein.

Building block 1: Scr&Tox

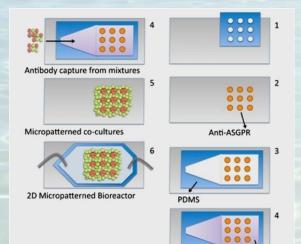
•• Stem cell differentiation for providing human-based organ specific target cells

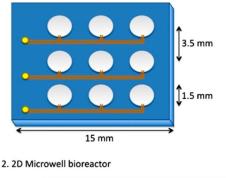


Coordinator: Marc Peschanski INSERM/i-STEM France

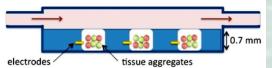
website: www.scrtox.eu

The cell factory





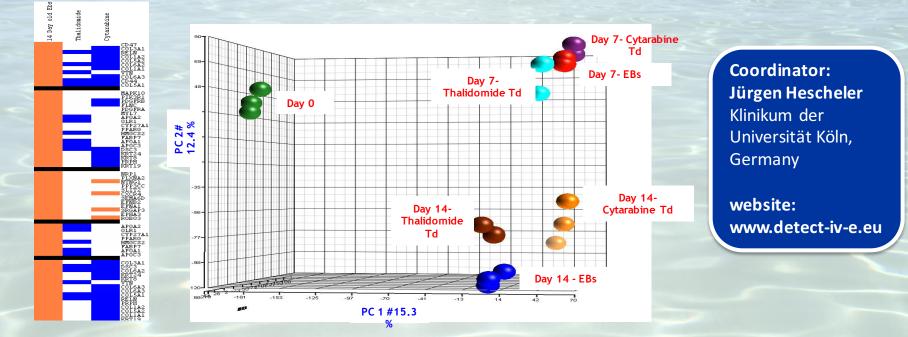
Building block 2: HeMiBio

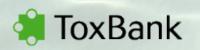

• Development of a hepatic microfluidic bioreactor

1. Microwell plate with sensor (injection molded)

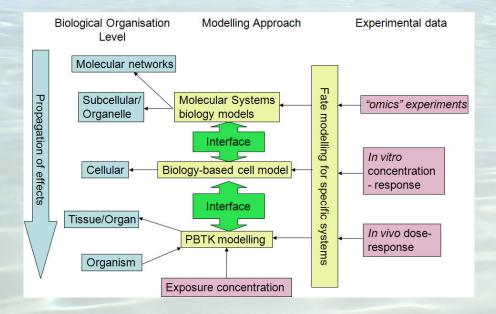
Coordinator: Catherine Verfaillie KU LEUVEN, Belgium

website: www.hemibio.eu


The in vitro liver ToxBank


DETECTIVE

 Identification of biomarkers for prediction of toxicity in humans


Biomarkers and functional assays

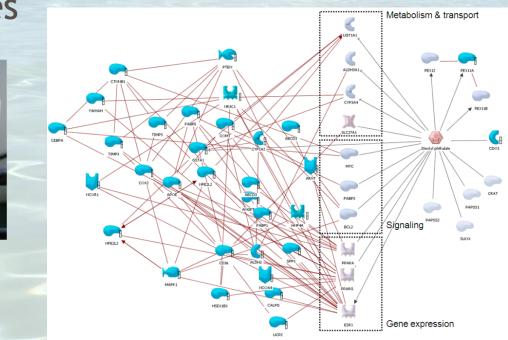
Building block 4: COSMOS

 Delivery of computational tools to predict the effects of chemicals based on *in silico* calculations and estimation techniques

Coordinator: Mark Cronin Liverpool John Moores University, UK

C SMOS

website: www.cosmos-tox.eu


In silico toxicology

oxBank

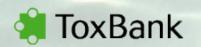
NOTOX

 Development of systems biological tools for organotypic human cell cultures

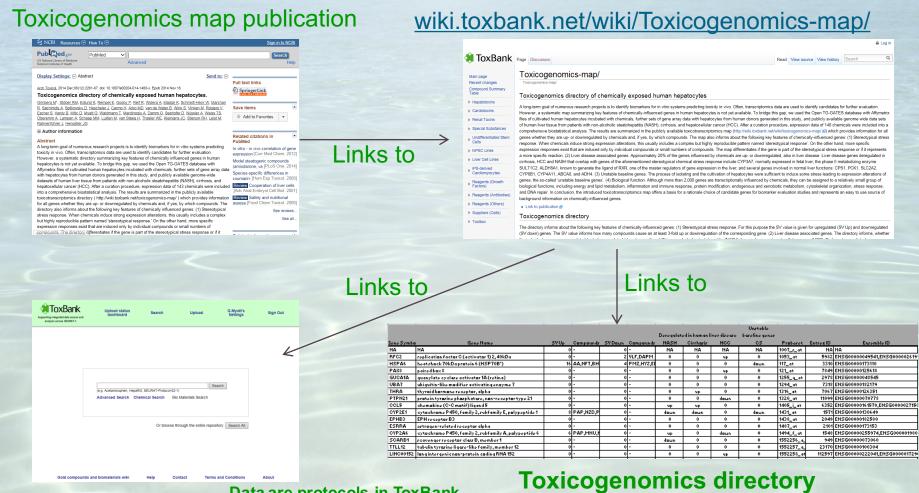
Coordinator: Elmar Heinzle Universität des Saarlandes, Germany

NOTOX

website: www. notox-sb.eu

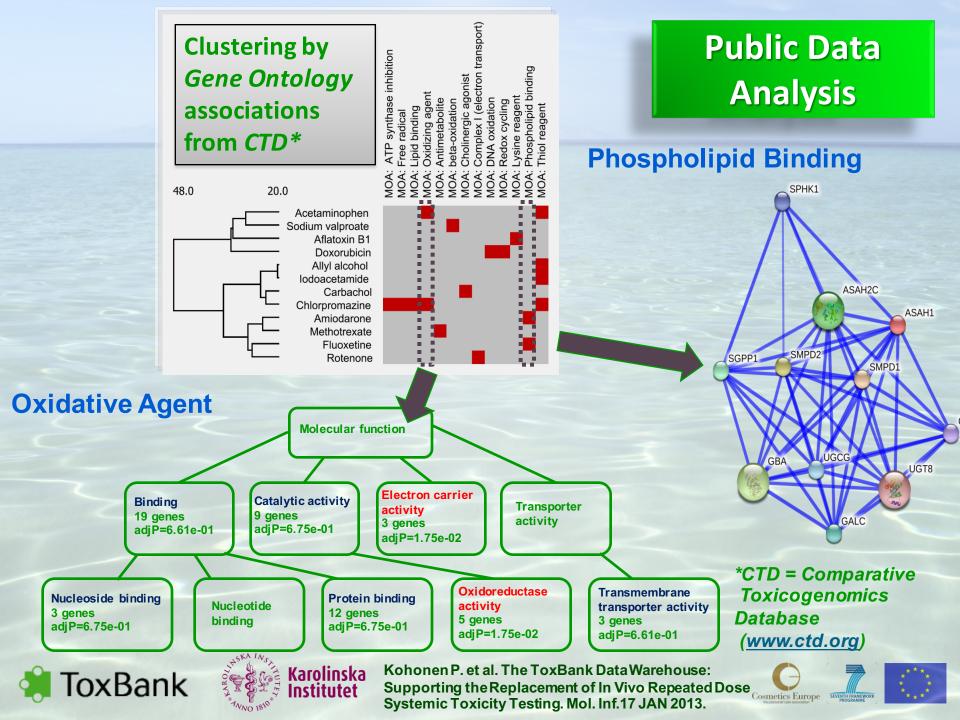

Thinking in systems

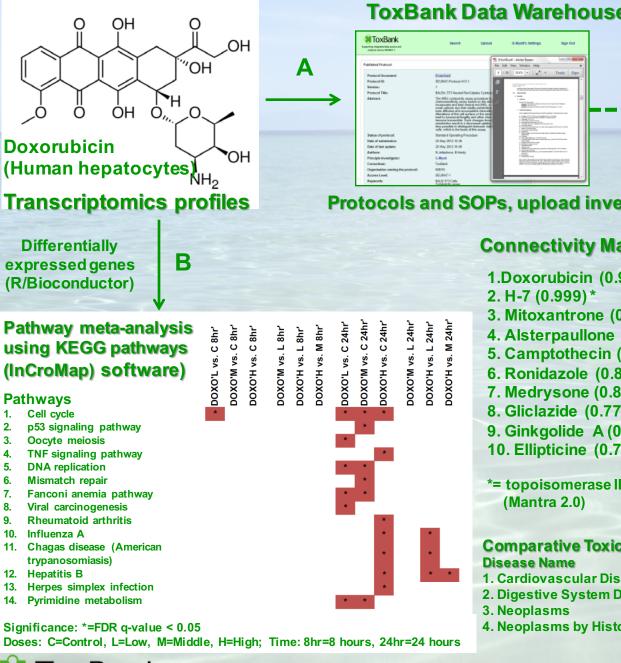
ToxBank Wiki Development

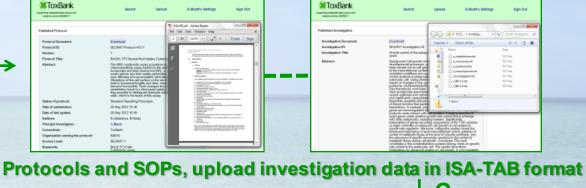

🗌 ToxBank	Page Discussion Edit View history View history View history	Q
	Main Page	
	Main Page	
Main page Recent changes		[edit]
 Hepatotoxins 	The following wiki pages provide information on compounds and biological materials developed as part of the SEURAT-1 P cluster through the ToxBank project. The research leading to these results h received funding from Cosmetics Europe and the European Community's Seventh Framework Programme P (FP7/2007-2013) under grant agreement n° [267042]. This wiki site reflects only the authors' views. The European Community and Cosmetics Europe are not liable for any use that may be made of the information contained herein.	las
Cardiotoxins		
Renal Toxins	Gold compounds wiki pages	[edit]
Special Substances	Information on this wiki is based on the research and compound selection tasks performed by the Gold Compound Working Group (GCWG) using a selection criteria outlined by members of the GCWG	3.
Undifferentiated Stem Cells	 Further background information may be available from this working group or under review; selected reviewed materials are made available here. Hepatotoxic Compounds 	
Reagents (Growth Factors)	Cardiotoxic Compounds Selection Criteria	
 <u>Reagents (Antibodies)</u> Reagents (Others) 	Questions, inquiries, comments and feedback regarding the scientific content on these pages may be directed to the Gold Compound Working Group (GCWG) . The email will automatically be sen all members on the GCWG group.	nt to
 Suppliers (Cells) 	Assistance with wiki access or issues with the website in general may be directed to Micha Rautenberg 🖄 or David Bower 🖄 of the ToxBank project.	
ALSPAC Asterand	Biological materials wiki pages	[edit]
Biopredic	This wiki contains information on cells and reagents relevant to the SEURAT-1 cluster. The following document provides guidance for the banking and supply of human embryonic stem cells:	
Cellartis Cellular Dynamics	• Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes.	
DSMZ	Questions, inquiries, comments and feedback regarding the scientific content on these pages may be directed to the Luam Kidane 🖄 at the UK Stem Cell Bank.	
HPACC ICLC	Recent News	[edit]
Lonza BioResearch Riken Bioresource	A report detailing the compound selection strategy was produced as a result of the numerous insightful meetings held at the Seurat-1 2 nd Annual Meeting 🗗 and may be downloaded here.	

wiki.toxbank.net

Toxicogenomics map




Cosmetics Europe SEVENTH FRAMEW PROGRAMME


Data are protocols in ToxBank (formatted data currently being tested)

ToxBank

ToxBank Data Warehouse (data curation and retrieval)

Connectivity Map (MCF7, PC-3 cell lines; p < 0.01)

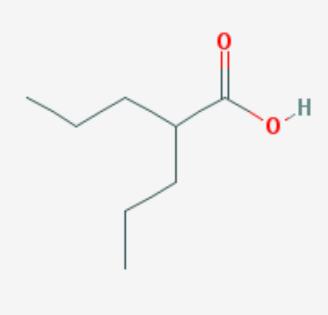
- 1.Doxorubicin (0.999) *
- 3. Mitoxantrone (0.998)*
- 4. Alsterpaullone (0.997)*
- 5. Camptothecin (0.991)
- 6. Ronidazole (0.87)
- 7. Medrysone (0.817)
- 8. Gliclazide (0.777)
- 9. Ginkgolide A (0.776)
- 10. Ellipticine (0.746) *
- *= topoisomerase II inhibitor

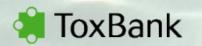
11. Etamsylate (0.746)

- 12. Trioxysalen (0.744)
- 13. Ethaverine (0.739)
- 14. Doxazosin (0.738)
- 15. Amiodarone (0.719)
- 16. Morantel (0.687)
- 17. PhthalyIsulfathiazole (0.684)
- 18. Dipyridamole (0.672)
- 19. Demeclocycline (0.645)
- 20. Famprofazone (0.643)

D

Comparative Toxicogenomics Database (q-value < 0.01)

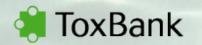

- 2. Digestive System Diseases
- **Disease ID** MESH:D002318 MESH:D004066 MESH:D009369 MESH:D009370



IoxBank Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafström R. Basic Clin Pharmacol Toxicol. 2014 Jul;115(1):50-8.

- 1. Cardiovascular Diseases
- 4. Neoplasms by Histologic Type

VPA – Mechanistic Analysis (Steatosis)

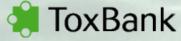

VPA – Background Knowledge

VPA -- background knowledge.

References ToxBank <u>http://wiki.toxbank.net/wiki/Valproic_Acid</u>

Wikipedia http://en.wikipedia.org/wiki/Valproic_acid

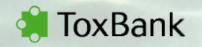
PubChem https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi ?cid=3121



wiki.toxbank.net

VPA – ToxBank Wiki

C 🗋 wiki.to	toxbank.net/wiki/	Valproic_Acid								۲
oxBank	Page Discussion					Read	View source	View history	Search	
age	Valproic	Acid								
changes	Valproic Acid									
und Summary totoxins	Executive S	Summary Info	ormation							
nary Page	Compound			Valproic Acid						
minophen	Toxicities			Steatosis, cytotoxicity						
xin B1 Ncohol	Mechanisms				the compound is a competitiv			sm, which acco		
Naphthoflavone				used at very high concent	hepatotoxic by a mechanism t rations and its promiscuous ac n produces a reactive alkylatir	activity at these cor	ncentrations is	likely due to di	isruption of me	mbrane
Naphthoflavone	Comments			used at very high concent integrity. P450 ω-oxidatio	rations and its promiscuous ad	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di gent that adds	isruption of me	mbrane
Naphthoflavone ntan	Comments Feedback Conta	act		used at very high concent integrity. P450 ω-oxidatio	rations and its promiscuous ac n produces a reactive alkylatin ted as a reference standard fo	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di gent that adds	isruption of me	mbrane
Naphthoflavone ntan rpromazine thoxy- thoquinone	Feedback Conta	act		used at very high concent integrity. P450 ω-oxidatio This compound was selec	rations and its promiscuous ac n produces a reactive alkylatin ted as a reference standard fo	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di igent that adds dation.	isruption of me	mbrane
Naphthoflavone ntan promazine thoxy- thoquinone IQ) apide			PK-ADME Data	used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working	rations and its promiscuous ac n produces a reactive alkylatin ted as a reference standard fo	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
Naphthoflavone ntan promazine thoxy- thoquinone IQ) apide	Feedback Conta			used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working	rations and its promiscuous ad n produces a reactive alkylatin ted as a reference standard fo Group (GCWG) ऌ	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
Naphthoflavone ntan promazine thoxy- thoquinone IQ) apide o etine	Feedback Conta	LIINTOP Data		used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working	rations and its promiscuous ad n produces a reactive alkylatin ted as a reference standard fo Group (GCWG) ऌ	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
Naphthoflavone ntan promazine thoxy- hoquinone Q) apide o etine cetamide	Feedback Conta	LIINTOP Data		used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working 'Omics and IC ₅₀ Data	rations and its promiscuous ad n produces a reactive alkylatin ted as a reference standard fo Group (GCWG) ऌ	activity at these cor ing and free radical	ncentrations is I-propagating a	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
Naphthoflavone ntan promazine thoxy- thoquinone (Q) apide setine cetamide otrexate mycin A	Feedback Conta	LIINTOP Data	e	used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working 'Omics and IC ₅₀ Data Com	rations and its promiscuous ad n produces a reactive alkylatin ted as a reference standard fo Group (GCWG) ⊗ Physical Properties	activity at these cor ing and free radical for steatosis via inh	ncentrations is I-propagating a nibition of β-oxi	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
Naphthoflavone ntan rpromazine thoxy- thoquinone VQ) apide o tectine acetamide otrexate mycin A npicin	Feedback Conta	LIINTOP Data	e "The foremo	used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working 'Omics and IC ₅₀ Data Com ost and most severe concer	rations and its promiscuous ac n produces a reactive alkylatin ted as a reference standard fo Group (GCWG)	activity at these cor ing and free radical for steatosis via inh	for	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane
darone Naphthoflavone ntan rpromazine thoxy- thoquinone NQ) tapide cetine acetamide otrexate mycin A npicin none oxifen	Feedback Conta	LIINTOP Data	The foremosudden and pancreatic f	used at very high concent integrity. P450 ω-oxidatio This compound was selec Gold Compound Working 'Omics and IC ₅₀ Data 'Omics and IC ₅₀ Data Com ost and most severe concer I severe, possibly fatal, fuln function, especially in those	rations and its promiscuous ac n produces a reactive alkylatin ted as a reference standard fo Group (GCWG) ☆ Physical Properties pound Assessment n for anyone taking valproic a	activity at these cor ing and free radical for steatosis via inh acid is its potential hematopoietic and This particular wa	for ming	likely due to di igent that adds dation.	isruption of me to the toxicity	mbrane

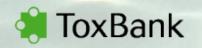

VPA – background knowledge profile wiki.toxbank.net/wiki/Valproic_Acid

Cosmetics Europe SEVENTH FRAMEWO

VPA Toxicity

As a fatty acid analogue, VPA is a competitive inhibitor of fatty acid metabolism, which accounts for steatosis. It is also hepatotoxic by a mechanism that has not been resolved; however, this hydrophobic compound is used at very high concentrations and its promiscuous activity at these concentrations is likely due to disruption of membrane integrity. P450 ω -oxidation produces a reactive alkylating and free radical-propagating agent that adds to the toxicity profile.

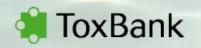
VPA was selected as a ToxBank reference standard for steatosis via inhibition of ß-oxidation.



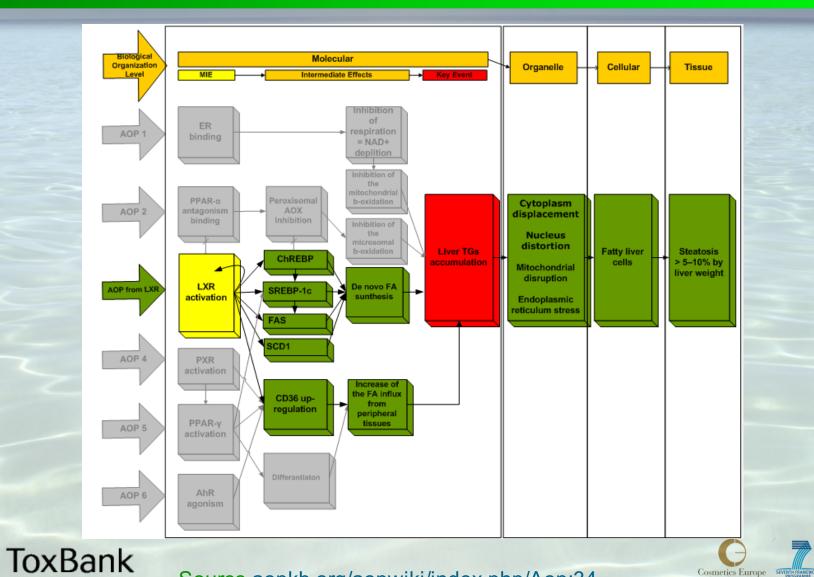
VPA Metabolism

Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30- 50% of an administered dose appears in urine as a glucuronide conjugate.

Mitochondrial -oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose.


Usually, less than 15-20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine.

Steatosis AOP (s)

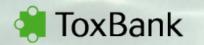

https://aopkb.org	/aopwiki/index.php/Aopi34 🔍 🗙 😰 🗸 🖨 🔸									
YAHOO! incro	imap 📀 Search 🛛 LIVE 💼 🤁 🗠 M 🗗 🕂									
Adverse Outcome Pathway WIKI	Page Discussion Read View source View history Search Aop:34 Aop:34 > File:LXR Activation to Liver Steatosis.png									
	AOP Title									
Navigation Main page AOP List	LXR Activation to Liver Steatosis Short name: LXR Activation to Liver Steatosis									
Help	Authors									
FAQ Recent changes Release notes	Marina Goumenou Status									
Actions	Alert: The Weight of Evidence column in the Molecular Initiating Event and Key Event tables has changed to Essentiality. Consider re-evaluating the columns in these tables.									
Create new AOP	Under development: Do not distribute or cite.									
Feedback	This AOP page was last modified on 1/11/2015. Click here to show/hide revision dates for related pages									
Upcoming Features Bug Reports Feature Requests	Abstract									
	Liver steatosis (fatty liver) is characterized by the accumulation of lipid droplets (mainly triglycerides) in the hepatocytes which can be identified histologically as either microvesicular or macrovesicular accumulation [1]. Steatosis is the output of the disturbance on the homeostasis of henatic lipids which denends on the dynamic halance of several nathwave including fatty acid (E4) untake. de novo E4									

aopkb.org/aopwiki/index.php/Aop:34

Steatosis AOP

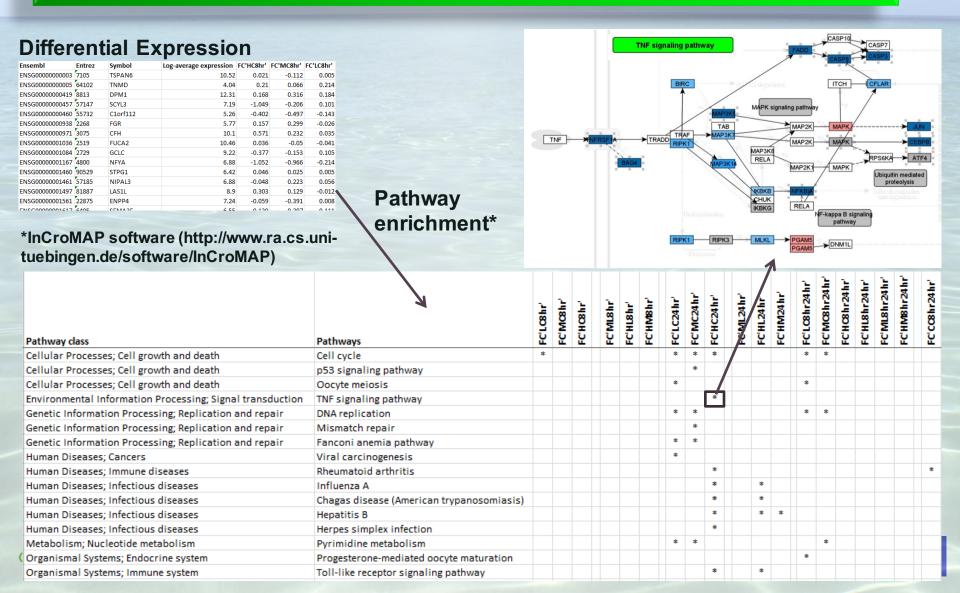
Source.aopkb.org/aopwiki/index.php/Aop:34

VPA Data Analysis (Background Knowledge)

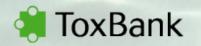

VPA

a. Omics Enrichment Analysis (Apply enrichment to TGG ToxBank dataset using InCroMap)

b. Include Assay Data - retrieve and examine assay data from ToxCast, PubChem and ChEMBL

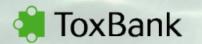

c. include in multiple enrichment analysis combined with omics data)

d. Review Steatosis AOP

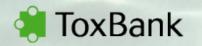


Omics analysis

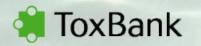
VPA Omics Data Analysis


We selected the medium concentration 24 hour TGG processed omics data set and performed an enrichment analysis with InCroMap to provide the set of processed data shown in next Table (using a filter of Fold Changes (FCs) with a log2 absolute value greater than 0.5).

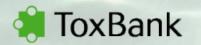
Enrichment analysis of TGG data for VPA (24h, med conc)

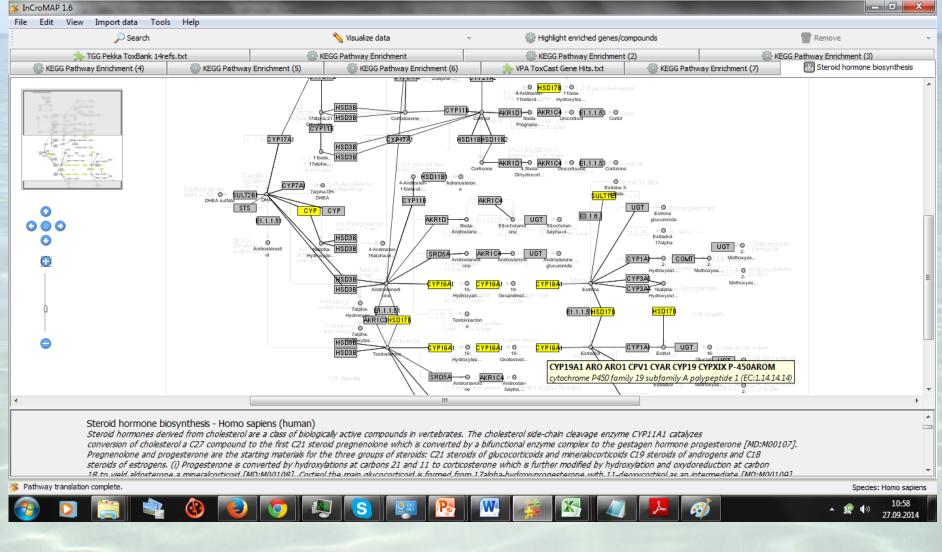

#	ID	Name	List ratio	BG ratio	P-value	Q-value	Genes/Compounds
	1 path:hsa04114	Oocyte meiosis	6/298	73/14867	2.771E-3	0.2146	CDC20, PLK1, IGF1, CCNE1, SGOL1, AURKA
	2 path:hsa04110	Cell cycle	7/298	105/14867	3.948E-3	0.2146	CDC20, ORC6, PLK1, TGFB1, CCNE1, TTK, CDC25A
	3 path:hsa00830	Retinol metabolism	4/298	36/14867	4.916E-3	0.2146	RDH16, CYP2C19, CYP4A11, CYP3A7
	4 path:hsa00330	Arginine and proline metabolism	4/298	42/14867	8.283E-3	0.2713	ARG1, CPS1, OAT, PRODH2
	5 path:hsa04975	Fat digestion and absorption	3/298	26/14867	0.0131	0.3356	MOGAT3, MOGAT2, MTTP
	6 path:hsa05020	Prion diseases	3/298	29/14867	0.0173	0.3356	C6, HSPA5, C9
	7 path:hsa00591	Linoleic acid metabolism	2/298	11/14867	0.0184	0.3356	CYP2C19, CYP3A7
	8 path:hsa00380	Tryptophan metabolism	3/298	32/14867	0.0221	0.3356	DDC, ACMSD, KMO
	9 path:hsa00140	Steroid hormone biosynthesis	3/298	33/14867	0.0238	0.3356	HSD17B2, CYP3A7, SULT1E1
	10 path:hsa00590	Arachidonic acid metabolism	3/298	34/14867	0.0256	0.3356	CYP2U1, CYP2C19, CYP4A11
	11 path:hsa00982	Drug metabolism - cytochrome P450	2/298	18/14867	0.0444	0.4595	CYP2C19, CYP3A7
	12 path:hsa00062	Fatty acid elongation	2/298	19/14867	0.0486	0.4595	ELOVL7, ELOVL4
	13 path:hsa01230	Biosynthesis of amino acids	3/298	45/14867	0.0487	0.4595	PKLR, ARG1, CPS1
	14 path:hsa04621	NOD-like receptor signaling pathway	3/298	47/14867	0.0535	0.4595	CCL2, CARD6, TRIP6
	15 path:hsa04918	Thyroid hormone synthesis	3/298	47/14867	0.0535	0.4595	PDIA4, HSPA5, ASGR1
	16 path:hsa03430	Mismatch repair	2/298	21/14867	0.0574	0.4595	MSH6, EXO1
	17 path:hsa00983	Drug metabolism - other enzymes	2/298	22/14867	0.0619	0.4595	XDH, CYP3A7
	18 path:hsa04974	Protein digestion and absorption	3/298	52/14867	0.0659	0.4595	ACE2, SLC3A1, SLC7A9
	19 path:hsa04141	Protein processing in endoplasmic reticulum	5/298	130/14867	0.0736	0.4595	PDIA4, CRYAB, HERPUD1, HSPA5, DDIT3
	20 path:hsa00232	Caffeine metabolism	1/298	4/14867	0.0778	0.4595	XDH
	21 path:hsa00980	Metabolism of xenobiotics by cytochrome P450	2/298	26/14867	0.0803	0.4595	CYP2C19, CYP3A7
	22 path:hsa05204	Chemical carcinogenesis	2/298	26/14867	0.0803	0.4595	CYP2C19, CYP3A7
	23 path:hsa04914	Progesterone-mediated oocyte maturation	3/298	58/14867	0.0815	0.4595	PLK1, IGF1, CDC25A
	24 path:hsa04115	p53 signaling pathway	3/298	59/14867	0.0842	0.4595	IGF1, CCNE1, SESN3
	25 path:hsa01200	Carbon metabolism	3/298	63/14867	0.0949	0.4972	PKLR, CPS1, G6PD
	26 path:hsa05146	Amoebiasis	3/298	65/14867	0.1002	0.5051	ARG1, TGFB1, C9
	27 path:hsa05215	Prostate cancer	3/298	69/14867	0.1109	0.5315	PDGFRB, IGF1, CCNE1
	28 path:hsa04146	Peroxisome	3/298	70/14867	0.1136	0.5315	HAO2, XDH, ACOX2
	29 path:hsa04151	PI3K-Akt signaling pathway	6/298	233/14867	0.1372	0.5952	PDGFRB, IGF1, IL7, CCNE1, TNC, EFNA1
	30 path:hsa04913	Ovarian steroidogenesis	2/298	39/14867	0.1409	0.5952	HSD17B2, IGF1
	31 path:hsa05218	Melanoma	2/298	39/14867	0.1409	0.5952	PDGFRB, IGF1
	32 path:hsa05214	Glioma	2/298	41/14867	0.1497	0.6075	PDGFRB, IGF1
	33 path:hsa05322	Systemic lupus erythematosus	2/298	42/14867	0.1541	0.6075	C6, C9
	34 path:hsa05144	Malaria	2/298	43/14867	0.1583	0.6075	CCL2, TGFB1
	35 path:hsa05202	Transcriptional misregulation in cancer	4/298	143/14867	0.1623	0.6075	NUPR 1, TSPAN7, IGF 1, DDIT3

VPA Omics plus ToxCast Data Analysis

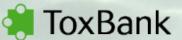

The ToxCast VPA data on non-gene target assays shows activities in assays involving AHR, cell cycle, mitotic arrest, and oxidative stress and are consistent with the above TGG data. Gene target assays showed activities for p53 (managing DNA repair or Apotosis if repair not feasible), FXR (controlling bile acid synthesis from cholesterol), and CYP19A1 (controlling aromatase production converting androgen male hormones to different forms of the female sex hormone estrogen).

VPA Omics plus ToxCast Data Analysis

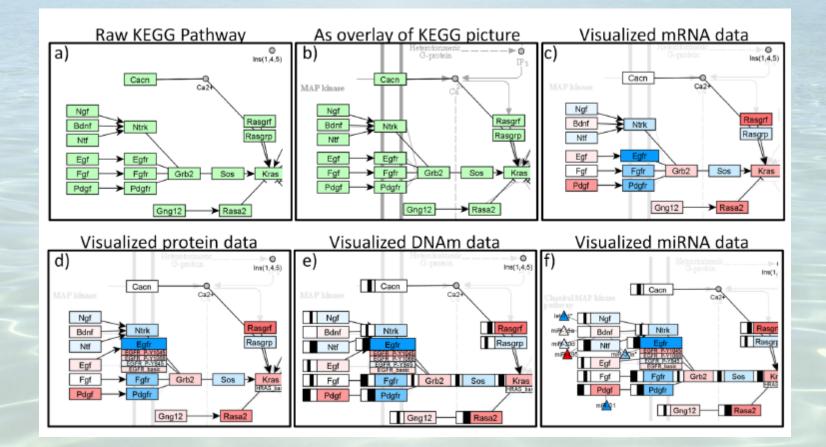

For multiple enrichment of TGG and gene target ToxCast assays we combine the two data sets in a multiple enrichment mapped to Kegg pathways. (Note that in these enrichments we apply a filter to include Homo Sapiens data only. We also repeated the analysis based on GO ontology enrichment with similar results). The addition of the CYP19A1 gene moves the steroid hormone synthesis pathway from its previous no 9 significance position with TGG omics data (3/298 genes, pv of 0.024) to its new no 2 position (4/298 genes, pv of 0.0037).

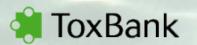

Enrichment analysis of TGG data for VPA (24h, med conc) plus ToxCast

#	ID	Name	List ratio	BG ratio	P-value	Q-value	Genes/Compounds
	1 path:hsa04114	Oocyte meiosis	6/300	73/14867	2.859E-3	0.1646	CDC20, PLK1, IGF1, CCNE1, SGOL1, AURKA
	2 path:hsa00140	Steroid hormone biosynthesis	4/300	33/14867	3.71E-3	0.1646	HSD17B2, CYP3A7, 1588, SULT1E1
	3 path:hsa04110	Cell cycle	7/300	105/14867	4.084E-3	0.1646	CDC20, ORC6, PLK1, TGFB1, CCNE1, TTK, CDC25A
	4 path:hsa00830	Retinol metabolism	4/300	36/14867	5.027E-3	0.1646	RDH16, CYP2C19, CYP4A11, CYP3A7
	5 path:hsa00330	Arginine and proline metabolism	4/300	42/14867	8.464E-3	0.2218	ARG1, CPS1, OAT, PRODH2
	5 path:hsa04975	Fat digestion and absorption	3/300	26/14867	0.0133	0.2902	MOGAT3, MOGAT2, MTTP
	7 path:hsa05020	Prion diseases	3/300	29/14867	0.0176	0.3046	C6, HSPA5, C9
1	3 path:hsa00591	Linoleic acid metabolism	2/300	11/14867	0.0186	0.3046	CYP2C19, CYP3A7
9	path:hsa00380	Tryptophan metabolism	3/300	32/14867	0.0225	0.327	DDC, ACMSD, KMO
1	path:hsa00590	Arachidonic acid metabolism	3/300	34/14867	0.026	0.3409	CYP2U1, CYP2C19, CYP4A11
1	1 path:hsa04913	Ovarian steroidogenesis	3/300	39/14867	0.0359	0.4278	HSD17B2, IGF1, 1588
1	2 path:hsa00982	Drug metabolism - cytochrome P450	2/300	18/14867	0.0449	0.4295	CYP2C19, CYP3A7
1	3 path:hsa00062	Fatty acid elongation	2/300	19/14867	0.0492	0.4295	ELOVL7, ELOVL4
1	4 path:hsa01230	Biosynthesis of amino acids	3/300	45/14867	0.0494	0.4295	PKLR, ARG1, CPS1
1	5 path:hsa04621	NOD-like receptor signaling pathway	3/300	47/14867	0.0542	0.4295	CCL2, CARD6, TRIP6
1	5 path:hsa04918	Thyroid hormone synthesis	3/300	47/14867	0.0542	0.4295	PDIA4, HSPA5, ASGR1
1	7 path:hsa03430	Mismatch repair	2/300	21/14867	0.058	0.4295	MSH6, EXO1
1	3 path:hsa00983	Drug metabolism - other enzymes	2/300	22/14867	0.0625	0.4295	XDH, CYP3A7
1	9 path:hsa04974	Protein digestion and absorption	3/300	52/14867	0.0668	0.4295	ACE2, SLC3A1, SLC7A9
2	path:hsa04141	Protein processing in endoplasmic reticulum	5/300	130/14867	0.0748	0.4295	PDIA4, CRYAB, HERPUD1, HSPA5, DDIT3
2	1 path:hsa00232	Caffeine metabolism	1/300	4/14867	0.0783	0.4295	XDH
2	2 path:hsa00980	Metabolism of xenobiotics by cytochrome P450	2/300	26/14867	0.0811	0.4295	CYP2C19, CYP3A7
2	3 path:hsa05204	Chemical carcinogenesis	2/300	26/14867	0.0811	0.4295	CYP2C19, CYP3A7
2	4 path:hsa04914	Progesterone-mediated oocyte maturation	3/300	58/14867	0.0826	0.4295	PLK1, IGF1, CDC25A
2	5 path:hsa04976	Bile secretion	3/300	58/14867	0.0826	0.4295	SLC10A1, 9971, SLC22A1
2	5 path:hsa04115	p53 signaling pathway	3/300	59/14867	0.0852	0.4295	IGF1, CCNE1, SESN3
2	7 path:hsa01200	Carbon metabolism	3/300	63/14867	0.096	0.4659	PKLR, CPS1, G6PD
2	3 path:hsa05146	Amoebiasis	3/300	65/14867	0.1014	0.4745	ARG1, TGFB1, C9
2	9 path:hsa05215	Prostate cancer	3/300	69/14867	0.1122	0.5015	PDGFRB, IGF1, CCNE1
3	path:hsa04146	Peroxisome	3/300	70/14867	0.1148	0.5015	HAO2, XDH, ACOX2
3	1 path:hsa04151	PI3K-Akt signaling pathway	6/300	233/14867	0.1385	0.5814	PDGFRB, IGF1, IL7, CCNE1, TNC, EFNA1
3	2 path:hsa05218	Melanoma	2/300	39/14867	0.142	0.5814	PDGFRB, IGF1
3	3 path:hsa05214	Glioma	2/300	41/14867	0.1509	0.5952	PDGFRB, IGF1
3	4 path:hsa05322	Systemic lupus erythematosus	2/300	42/14867	0.1553	0.5952	C6, C9

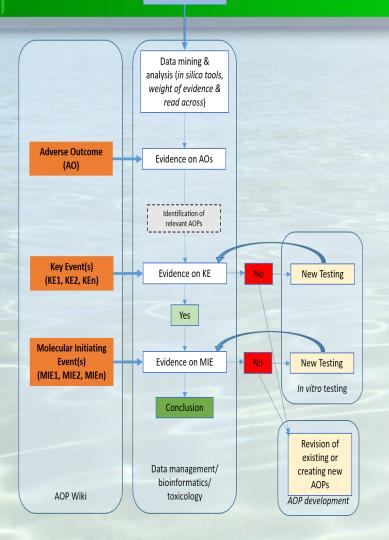


Enrichment analysis of TGG data for VPA (24h, med conc) plus ToxCast



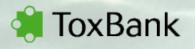

Cosmetics Europe

SEVENTH FRAMEW


Understanding multiple omics datasets

Workflow for Ab Initio Risk Assessment

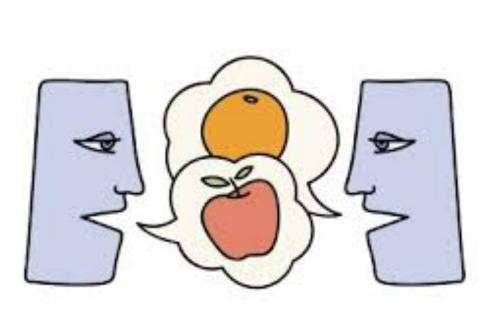
oxBank


- Identification of Adverse Effects
- Validation of Regions of Concern
- Mode of Action
 - Mechanism
 - New Test
 - Revision of AOP

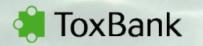
Identification of Adverse Effects

		Transcriptomics data of the liver cell line HepaRG (AN-DIXA-012 - CarcinoGENOMICS)	8Pt-T4- PPX5-24h-R-1-1	8PFT3-PPX5-24h-R-1-1	8PFT2-PPX5-24h-R-1-1	8.PF.T4- PPX5-7.2 h-R-1-1	8PtT3-PPX5-72hR-1-1	8PFT2-PPX5-72h-R-1-1	BPF T4- PPX 10-24h- R-1-1	BPI-T3- PPX 10-24h-8-1-1	8PFT2-PPX10-24h-R-1-1	8Pt-T4+ PPX 10-7 2h+ 8+ 1- 1	8PFT3-PPX10-72h-8-1-1	BPFT2-PPX10-72h-R-1-1
		Piperonyl Butoxide (PBO, PPX)	1.6 µM	1.6 µM	1.6 µM	1.6 µM	1.6 µM	1.6 µM	3.2 µM	3.2 µM	3.2 µM	3.2 µM	3.2 µM	3.2 µM
		KEGG pathway (Q<0.05)	24h	24h	24h	72h	72h	72h	24h	24h	24h	72h	72h	72h
		Drug metabolism - cytochrome P450							•	•		•	•	•
•••	Н	Retinol metabolism							•			· •		•
•	• •	Metabolism of xenobiotics by cytochrome P450							•	•		•	•	•
		Chemical carcinogenesis							•	· •		•	· •	•
		PI3K-Akt signaling pathway										•		
		ECM-receptor interaction										· •		
		Proteoglycans in cancer										· •		
		Focal adhe sion										· •		
		Rheumatoid arthritis												
		Chemokine signaling pathway											•	
		TNF signaling pathway											. •	

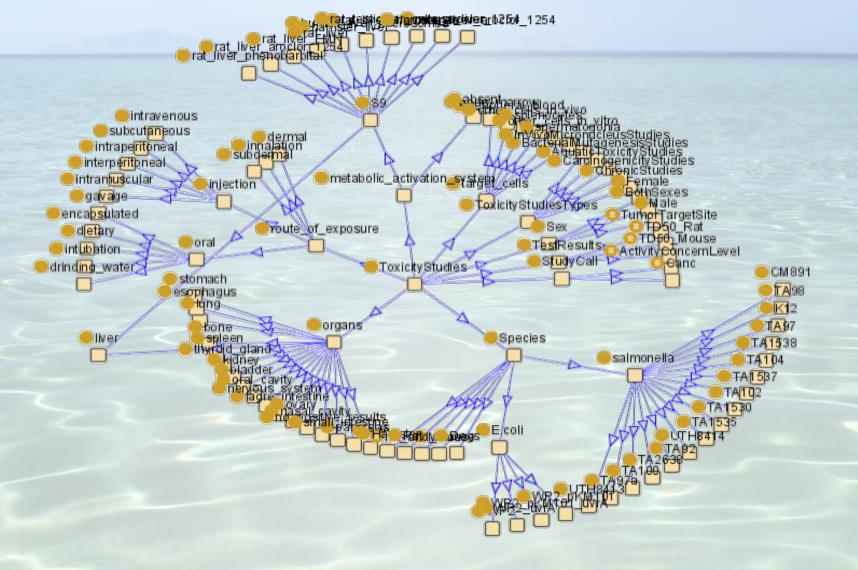
http://www.ra.cs.uni-tuebingen.de/software/InCroMAP

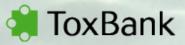

Validation of Regions of Concern

Including information from AOPs Relationships Among Key Events and the Adverse Outcome ✤ AOP38: Event ♦ Weight of Evidence ♦ Quantitative Understanding ♦ ♦ Description ♦ Triggers Protein, Alkylation Directly Leads to Cell death, N/A Strong Cell death, N/A Directly Leads to Hepatic macrophages (Kupffer Cells), Activation Strong Cell death, N/A Indirectly Leads to Stellate cells, Activation Strong Hepatic macrophages (Kupffer Cells), Activation Directly Leads to Strong TGFbeta1 expression. Up Regulation Directly Leads to Stellate cells, Activation Strong TGFbeta1 expression. Up Regulation Chemical MIE Cellular Level **Tissue Level** Organ Level Structure & Properties Parent Collagen Protein-Hepatocyte accumulation compound or Kupffer cell TGF-B1 Stellate cell Alkylation Injury Changes in Liver fibrosis metabolite activation Activation expression ECM ovalent Protei capable of Apoptosis alkylating binding composition proteins

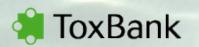

ToxBank

Common Language



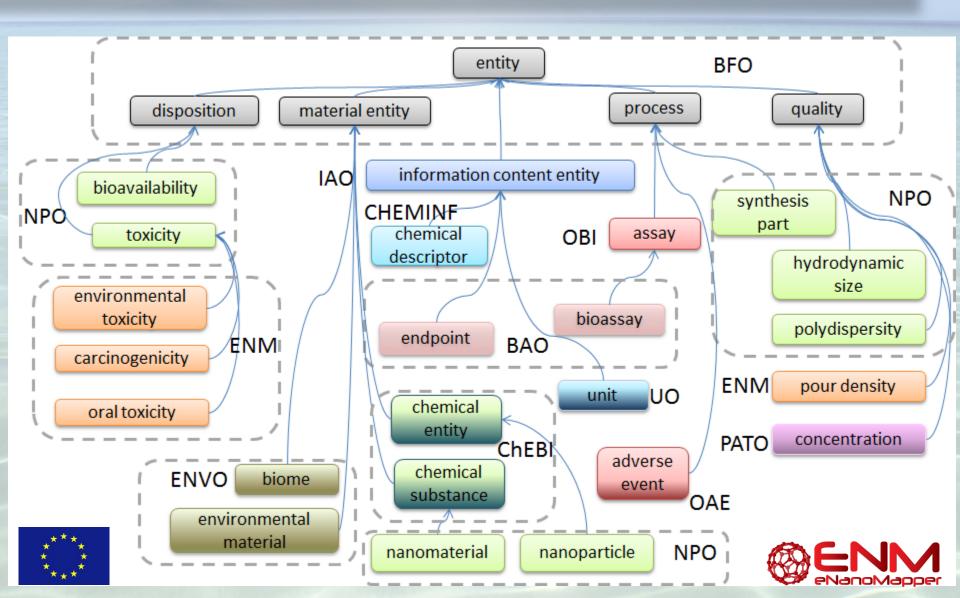

Source: sheezaredhead.wordpress.com/2011/01/12/use-common-language-please/

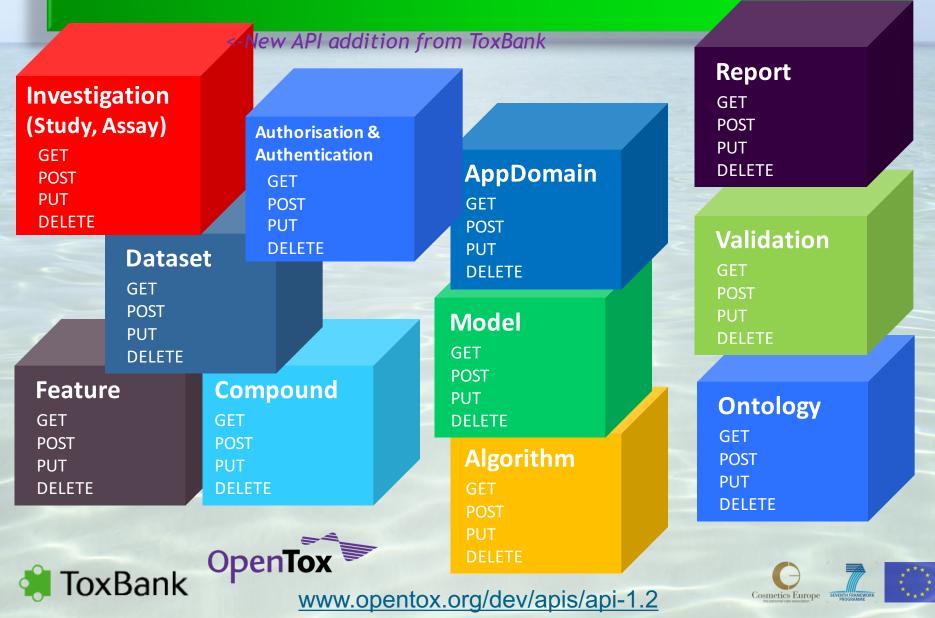
Toxicological Ontology: graphical representation



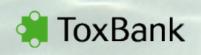
A Toxicology Ontology Roadmap

- See perspectives and roadmap published in A Toxicology Ontology Roadmap ALTEX 29(2), 129- 137 and Toxicology Ontology Perspectives 139 - 156 (2012)
- Available online in Open Access mode from <u>www.altex.ch</u>
- Barry Hardy (Douglas Connect and OpenTox), Gordana Apic
 (Cambridge Cell Networks), Philip Carthew (Unilever), Dominic Clark
 (EMBL-EBI), David Cook (AstraZeneca), Ian Dix (AstraZeneca &
 Pistoia Alliance), Sylvia Escher (Fraunhofer Institute for Toxicology &
 Experimental Medicine), Janna Hastings (EMBL-EBI), David J. Heard
 (Novartis), Nina Jeliazkova (Ideaconsult), Philip Judson (Lhasa Ltd.),
 Sherri Matis-Mitchell (AstraZeneca), Dragana Mitic (Cambridge Cell
 Networks), Glenn Myatt (Leadscope), Imran Shah (US EPA), Ola
 Spjuth (University of Uppsala), Olga Tcheremenskaia (Istituto
 Superiore di Sanità), Luca Toldo (Merck KGaA), David Watson (Lhasa
 Ltd.), Andrew White (Unilever), Chihae Yang (Altamira)


Based on Proceedings from the Toxicology Ontology Roadmap Workshop

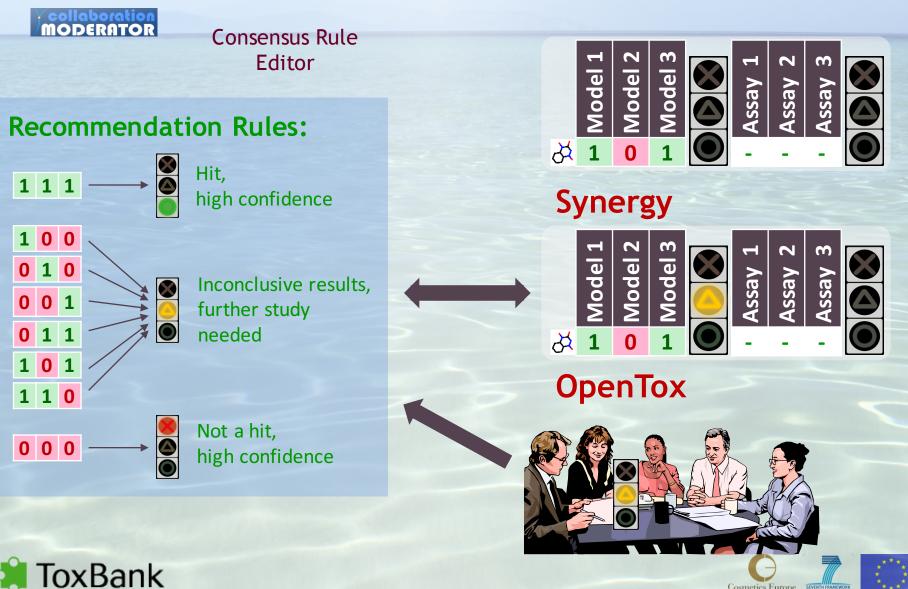

EMBL-EBI Industry Programme Workshop 16 -17th November 2010, Hinxton, UK

Ontology assembled from multiple sources

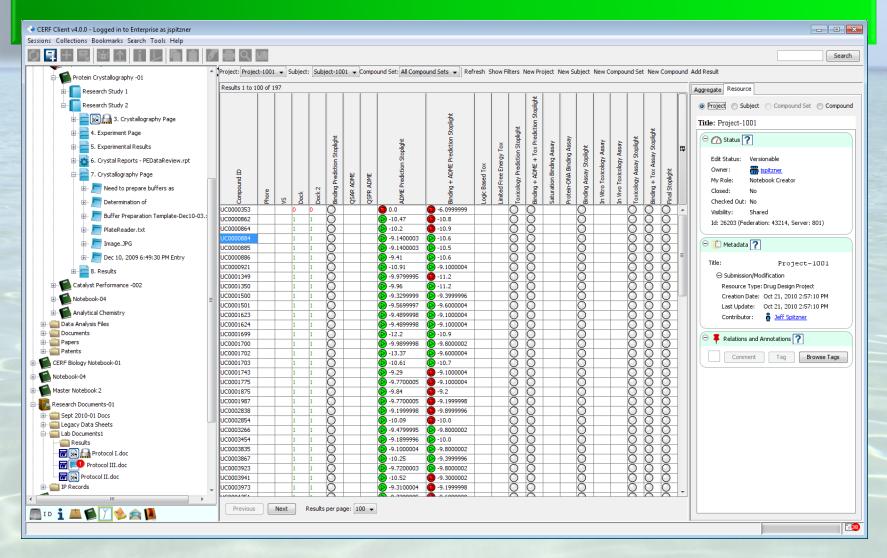


OpenTox and Open Components and Standards

Bioclipse Visualisation Workbench - OpenTox


bursiPos3.mol		n Support 🛛		- • •
	* • • • • • • • • • • • • • • • • • • •		 Caco-2 Cell Permeability http://www.n © Caco-2 Cell Permeability http://www.n Permeability http://www.n Permeability http://www.n Permeability http://www.n Permeability http://www.n Permeability http://www.n Permeability http://www.n Permeability http://www.n Perme	
	Properties 8	Ualue	🗈 2D-Structure 😫 📃 🗖	
Collaborations and Egon W	 Property General Classification Matching atoms Name	POSITIVE 22, 21, 23 Epoxide Ames Structural Alerts		

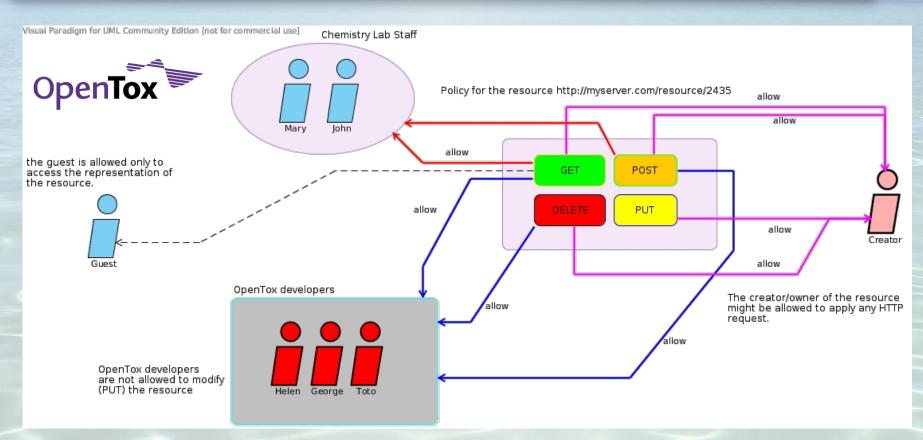
Bioclipse-OpenTox Integration – See Application example in Chapter in <u>Open</u> Source Software in Life Science Research: Practical Solutions to Common Challenges in the Pharmaceutical Industry and Beyond (Woodhead Publishing Series in Biomedicine) edited by Lee Harland and Mark Forster (30 Oct 2012)



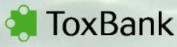
Event Driven Weight of Evidence

Cosmetics Europe SEVENTH FRAMEW

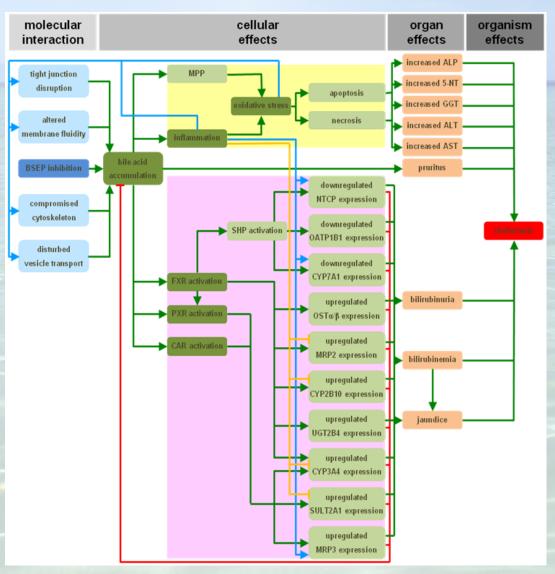
Event-driven Weight of Evidence

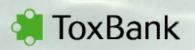

Hardy and Affentranger, Drug Discovery Today.

2013 Jul; 18(13-14):681-6.


ToxBank

Integrating public and confidential data




Use Open Standards on Resources but with extensive Authorisation and Authentication facilities accompanied by confidential data policies. e.g. Validation against Confidential Data Case implemented by OpenTox Spring 2011

Adverse outcome pathway (AOP) : drug-induced cholestasis

Vinken M., Landesmann B., Goumenou M., Vinken S., Shah I., Jaeschke H., Willett C., Whelan M., Rogiers V. (2013) Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. *Archives of Toxicology*: submitted .

OpenTox Purpose – from the Articles of Association

The purpose of OpenTox is to promote the community-based exchange and use of open knowledge, methods, tools, reference resources, data and standards in the scientific activities of predictive toxicology, safety assessment and risk management, including the "3Rs" goal of the Reduction, Refinement and **Replacement of Animal Testing.**

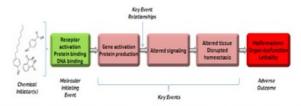
🐐 ToxBank

www.opentox.net/the-opentox-association

OpenTox Working Groups

Working Groups

- a. Application Programming Interfaces (APIs), Christoph Helma (in silico toxicology)
- b. Data, Metadata and Ontology Standards, Thomas Exner (Douglas Connect GmbH)
- c. Adverse Outcome Pathway (AOP) development, Stephen Edwards (US EPA) & Clemens Wittwehr (EC JRC)
- d. Deployment, *Tim Dudgeon (Informatics Matters)*


OpenTox and AOPs

Open Tox			٩		
HOME	RESOURCES	LIBRARY	EVENTS	OPENTOX ASSOCIATION	ABOUT

WG2: MAPPING DATA RESOURCES TO AOPS

AOPS (ADVERSE OUTCOME PATHWAYS): COLLECTION AND DISSEMINATION WITH AOP KNOWLEDGE BASE (AOP-KB) AND POSSIBLE SYNERGIES WITH OPENTOX

An AOP is an analytical construct that describes a sequential chain of causally linked events at different levels of biological organisation that lead to an adverse health or ecotoxicological effect. AOPs are the central ele ment of a toxicological knowledge framework being built to support chemical risk assessment based on mechanistic reasoning. AOPs portray existing knowledge concerning the linkage between two anchor points - the Molecular Initiating Event (MIE), and an Adve rse Outcome (AO), connected by a chain of Key Events (KE) and the relationships between them (KER).

To enable the scientific community, in one central location, to share, develop and discuss their AOP - related knowledge, the "Adverse Outcome Pathway Knowl edge Base" (AOP - KB, http://aop - kb.org) was created. AOP - KB is a crowdsourcing platform managed by the Organisation for Economic Co - operation and Development (OECD): Everyone across the stakeholder community (research, indu stry, regulatory bodies etc.) is invited to contribute their AOP knowledge

OPENTOX EURO 2015

- PROGRAM AND ABSTRACT BOOKLET
- OPENTOX EURO 2015 MEETING
- OPENTOX EURO 2015 PROGRAM
- DUBLIN ACCOMMODATIONS & TRAVEL
- SUBMIT ABSTRACT, POSTER
- REGISTER ONLINE
- ABOUT OPENTOX EVENTS

SESSIONS EURO 2015

- ALL SESSIONS
 KNOWLEDGE CAFE SESSION
 POSTER SESSION
 S.1: INFORMATION REQUIREMENTS
 S.2: CHARACTERISATION OF SYSTEMS
 S.3: EXPERIMENTAL DATA GENERATION

ToxBank www.opentox.net/events/opentox-euro-2015/wg/mapping-data-resources-aops

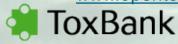
OpenTox and AOPs

Working Group S ession 2 will raise awareness of the data requirements and their implementation in the AOP - KB on the one hand and data services and format standards proposed by Open Tox on the other. Short presentations of both will set the scene for a discussion on the possible synergy between the OpenTox Framework and its resources and standards, esp. the OpenTox Ontology effort and the OpenTox Data Warehouse (Toxbank). Potential in corporation of other standards like the OECD Harmonized Templates (OHTs) for chemical hazard properties (e.g. the upcoming OHT 201 on "Intermediate Effects") will be covered. Use of OpenTox warehouse data in the AOP - KB to underpin chemical - agnostic AOP kno wledge with real - life chemical data will be discussed . Embracing an open standard approach and third parties that might benefit and potentially use the emerging standard will be identified. Creating a common vision for the use of shared tools and data for the prediction of toxicity is a goal.

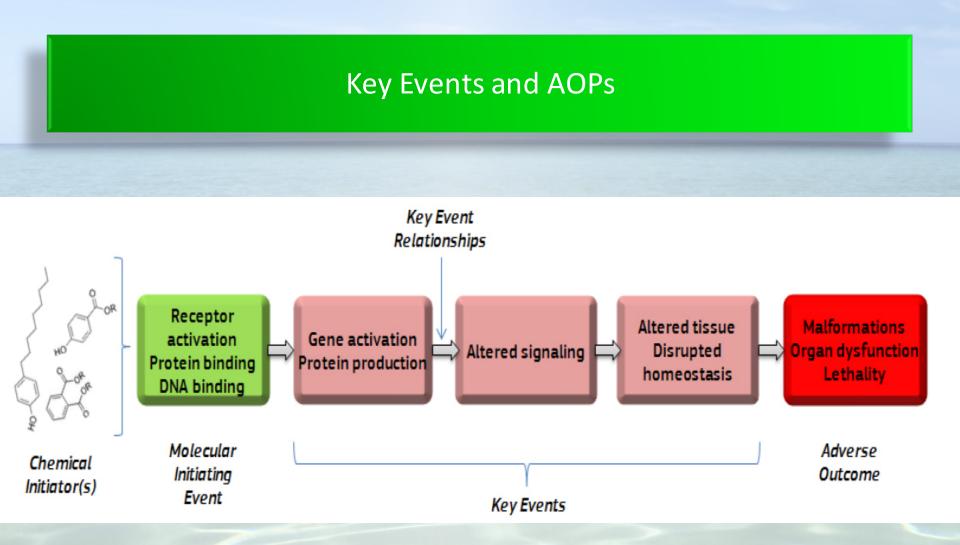
3.5. WODELLING CELLOLAK PERTORBATI

- 5.6: LINKING PARAMETERS & EVIDENCE
- S7: KNOWLEDGE INTEGRATION
- SESSION INDEX
- WORKING GROUPS (WG)

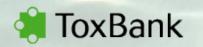
The result of Working Group S ession 2 will be an agreement on a way forward to re - use, where possible, OpenTox deliverables in the AOP - KB with a view to cross - fertilization between both areas, especially in the creation of a jointly supported ontology of terms used in both projects.

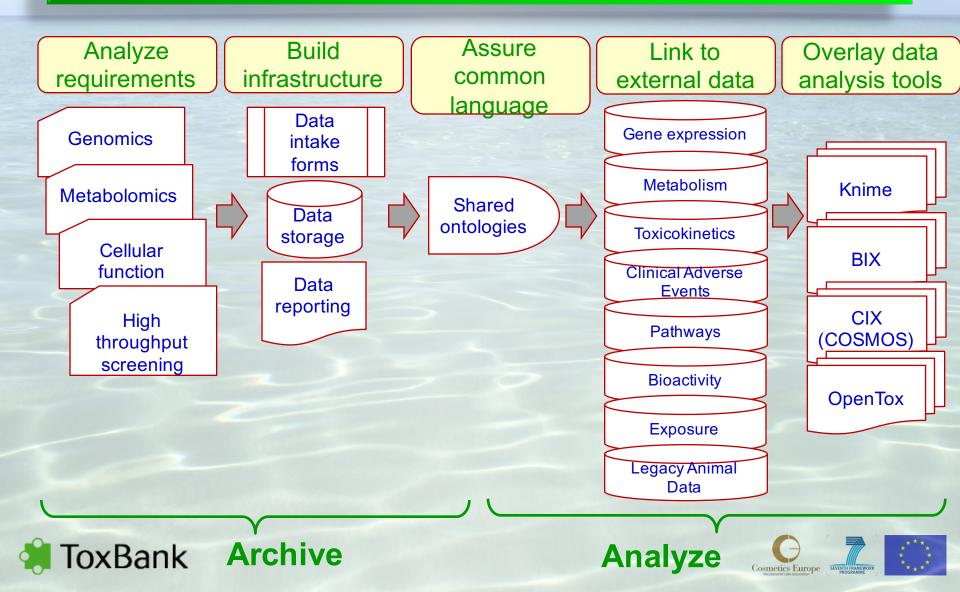


Workshop Leader: Clemens Wittwehr, Project Co-ordinator at European Commission - Joint Research Centre (JRC)

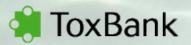


Clemens Wittwehr is responsible for the Data2Knowledge project in the Systems Toxicology Unit of the JRC's Institute for Health and Consumer Protection (IHCP). Data2Knowledge bridges the gap between Information Technology and Life Sciences by enabling res earchers to capture, manage, publish and share their data in a global stakeholder community from science, industry and regulatory bodies. This JRC activity underpins the


www.opentox.net/events/opentox-euro-2015/wg/mapping-data-resources-aops

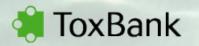


www.opentox.net/events/opentox-euro-2015/wg/mapping-data-resources-aops


Structure of a Knowledge Management System for Toxicity Prediction

ToxBank Analysis

2014 Lush Science Prize Winners: Roland Grafström and Pekka Kohonen



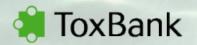
Barcelona highlight

Messi scores winner on rebound - www.youtube.com/watch?v=5wlTvdBfhfw

ToxBank Acknowledgements

DouglasConnect

in silico toxicology



UK Stem Cell Bank, NIBSC-HPA

Ideaconsult Ltd

