Case studies from SEURAT-1

DETECTIVE

Jos Kleinjans

Dept of Toxicogenomics
Maastricht University
Increasing demands on chemical risk assessment

- High failure rate of new drug candidates due to unmanageable toxicity, accounting for approximately 30% of this attrition

- The EU REACH program on industrial chemicals
 - Existing and new substances should in the future be subject to the same procedure under a single system.
 - Large amounts of additional tests required before 2018
 - 30,000 existing chemicals already placed on the market since before 1981 and sold at > 1 tonne per year

- EU-wide ban on animal use in cosmetics development.

Future EU regulations on food chemicals
BUILDING BLOCKS: construction of a solid foundation in an integrated approach of six research projects (“building blocks”), each dedicated to a specific topic:

- Safety Evaluation Ultimately Replacing Animal Testing

 - Stem cell differentiation for providing human-based organ specific target cells to assay toxicity pathways in vitro
 - Development of a hepatic microfluidic bioreactor mimicking the complex structure and function of the human liver
 - Identification and investigation of human biomarkers in cellular models for repeated dose in vitro testing
 - Delivery of an integrated suite of computational tools to predict the effects of long-term exposure to chemicals in humans based on in silico calculations
 - Development of systems biological tools for organotypic human cell cultures suitable for long term toxicity testing and the identification and analysis of pathways of toxicological relevance
 - Data management, cell and tissue banking, selection of reference compounds and chemical repository
 - Cluster level coordinating and support action
DETECTIVE will set up a screening pipeline of functional and “-omics” technologies, including high content and high throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular *in vitro* models.

Emphasis will be put on the systematic exploitation of functional and “-omics” readouts, including high content and high throughput screening platforms.

While functional parameters give more insights into the effects of toxicants on specific cell functions of interest, “-omics” techniques will deliver data on the entire cellular situation at the molecular level.

→ DETECTIVE will perform for the first time an in-depth investigation of repeated dose effects on epigenetics and microRNA (miRNA) expression thus exploring whether such analyses deepen our understanding of toxic modes of action.
1. Kidney model:
RPTEC/TERT1 cells: human renal proximal tubule cell line

2. Heart model:
human induced pluripotent stem (iPS) cardiomyocytes

3. Liver model:
primary human hepatocytes, HepaRG, HepG2
Integration of transcriptomics, proteomics, metabonomics with epigenetics and microRNA and bioinformatics in predictive toxicology
Main hypothesis:

Toxicant-induced changes in molecular networks which persist after terminating repeated dosing \textit{in vitro}, present promising biomarkers for repeated dose toxicity in humans.
Liver experiments @UM

1) “Assessment of repeated dose toxicity of valproic acid in the human liver using integrative ‘-omics’ data analyses”
 → integrated data analyses of DNA methylation, gene expression and miRNAs in order to find novel mechanisms of VPA induced liver steatosis

2) “Assessment of repeated dose toxicity of aflatoxin B1 (AFB1) in the human liver using integrative ‘-omics’ data analyses”
 → integrated data analyses of DNA methylation, gene expression and miRNAs in order to find novel mechanisms of AFB1 induced liver carcinogenesis

3) “Assessment of repeated dose toxicity of cyclosporin A in the human liver using integrative ‘-omics’ data analyses”
 → integrated data analyses of DNA methylation, gene expression and miRNAs in order to find novel mechanisms of CsA induced liver cholestasis
Liver model: primary human hepatocytes:

- Commercially available
- Cryopreserved platable hepatocytes: pool of 3 different human donors
- High viability
- Cultured in two-layer collagen sandwich model
- Cells show *in vivo* like configuration
- *In vivo*-like enzyme expression levels
Assessment of repeated dose toxicity of valproic acid in pooled human primary hepatocytes using integrative ‘omics data analyses

- VPA is known to induce liver steatosis, presumably through oxidative stress
- inhibits the enzyme histone deacetylase 1, thereby inducing histone hyperacetylation
- stimulates active demethylation in a replication independent manner by increasing accessibility of demethylase enzyme
- effects on mRNA and miRNA expression
Analyses

1. DNA methylation analyses
 NimbleGen 2.1M Deluxe Promoter Array Medip-Chip

2. Transcriptomics
 Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts

3. miRNA analyses
 Agilent Human miRNA Microarray Release 19.0, 8x60K based on miRBase. 2006 human miRNAs represented.

4. Analysis of steatosis
 collagen-sandwiched pooled PHH (3 donors) were stained with BODIPY (green) to visualize intracellular lipid droplets

√ DNA methylation analyses
√ Transcriptomics
Ongoing miRNA analyses
√ Analysis of steatosis
Identification of differentially methylated (DMG) and differentially expressed genes (DEG) after 5 days of VPA exposure

<table>
<thead>
<tr>
<th>Settings</th>
<th>DMG Magnitude >0 or <0; p-value <0.01 FDR <0.05</th>
<th>DEG P-value <0.05; FDR <0.05; FC >1.5 or <1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8226</td>
<td>1932</td>
</tr>
<tr>
<td></td>
<td>9305</td>
<td>1478</td>
</tr>
<tr>
<td>Total</td>
<td>17531</td>
<td>3410 (7997 no FC)</td>
</tr>
</tbody>
</table>

Metacore™ pathway analyses of 6636 genes: 67 significant pathways (P <0.05). Top 10:

- Immune response_IL-13 signaling via PI3K-ERK
- Cholesterol Biosynthesis
- Development_Growth hormone signaling via PI3K/AKT and MAPK cascades
- Apoptosis and survival_Endoplasmic reticulum stress response pathway
- Histidine-glutamate-glutamine metabolism
- Development_Angiotensin signaling via STATs
- Mitochondrial ketone bodies biosynthesis and metabolism
- Propionate metabolism p.2
- Development_IGF-1 receptor signaling
- Aminoacyl-tRNA biosynthesis in cytoplasm
Persistence of epigenetic changes: comparison of 5 days of exposure with washout after 3 days

Pathway analyses of 4082 persistently methylated genes using MetacoreTM

- Twenty pathways: P<0.05 \(\rightarrow\) 2 pathways involved in lipid metabolism; but also: DNA damage, apoptosis, cytoskeleton remodeling, immune response, cell adhesion.
- Lipid metabolism: fatty acid omega oxidation
Assessment of repeated dose toxicity of AflatoxinB1 in pooled human primary hepatocytes using integrative ‘omics data analyses

- Hepatotoxic and carcinogenic mycotoxin
 - Acute: apoptosis of liver cells and bile duct proliferation (Aflatoxicosis)
 - Chronic: hepatocellular carcinoma
- AFB1 exposure is associated with global hypo-methylation and gene specific hypermethylation
Analyses

1. **DNA methylation analyses**
 - NimbleGen 2.1M Deluxe Promoter Array
 - Medip-Chip

2. **Transcriptomics**
 - Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays
 - Human Genome U133 Set plus 6,500 additional genes for analysis of over 47,000 transcripts

3. **miRNA analyses**
 - Agilent Human miRNA Microarray Release 19.0, 8x60K based on miRBase.
 - 2006 human miRNAs represented.

(Integrated) data analyses
Results: numbers of modulated genes

Number of DMGs, DEGs, and DE-miRNAs in PHH after 5 days of exposure to the high dose (1 µM) and low dose (0.3125 µM) of AFB1, and after a washout of 3 days

<table>
<thead>
<tr>
<th>Direction of effect*</th>
<th>High dose</th>
<th>Low dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMG</td>
<td>DEG</td>
</tr>
<tr>
<td>Magnitude >0 or <0; p-value <0.01; FDR <0.05</td>
<td>5 days</td>
<td>5 days</td>
</tr>
<tr>
<td>+</td>
<td>2511</td>
<td>1399</td>
</tr>
<tr>
<td>-</td>
<td>2491</td>
<td>1156</td>
</tr>
<tr>
<td>Total</td>
<td>5002</td>
<td>2555</td>
</tr>
</tbody>
</table>

*direction of effect:
+ = DNA hypermethylation; gene expression upregulation; miRNA expression upregulation
- = DNA hypomethylation; gene expression downregulation; miRNA expression downregulation
Identification of persistent, reversible and newly expressed DE-miRs

<table>
<thead>
<tr>
<th></th>
<th>DE-miRs persistent during washout</th>
<th>DE-miRs reversible during washout</th>
<th>DE-miRs newly emerging during washout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Down-regulated</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Up-regulated</td>
<td>2</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>
Integrated data analysis using networks

Persistent effects
- microRNA
- A priori known HCC related genes
- Drug and energy metabolism

Reversible effects
- microRNA
- A priori known HCC related genes
- Stress response

New effects
- microRNA
- A priori known HCC related genes
- DNA damage response and replication

Novel HCC related genes
- Pre-, post- and transcriptional regulation of gene expression
- Cell cycle and DNA repair
- Beta-oxidation

Novel HCC related genes

Integrated data analysis using networks

Persistent effects
- microRNA
- A priori known HCC related genes
- Drug and energy metabolism

Reversible effects
- microRNA
- A priori known HCC related genes
- Stress response

New effects
- microRNA
- A priori known HCC related genes
- DNA damage response and replication

Novel HCC related genes
- Pre-, post- and transcriptional regulation of gene expression
- Cell cycle and DNA repair
- Beta-oxidation
Identification of regulatory miRNA-gene interactions

- **Persistent effects** microRNA:
 - hsa-miR-34b-5p
 - hsa-miR-222-3p

- **Reversible effects** microRNA:
 - hsa-miR-161b-5p
 - hsa-miR-130b-3p
 - hsa-miR-224-3p

- **New effects** microRNA:
 - hsa-miR-555-3p
 - hsa-miR-1260b

A priori known HCC related genes
- BIRC3
- TXNRD1
- CHML
- EVI5
- ACTB
- RPL27A

Drug and energy metabolism
- SLC3A2
- PSMC4

Stress response
- FRNP
- ECT2
- PRKRM2
- S100A2
- WEE1
- HMGA1

Novel HCC related genes
- XIPS2
- WDR77
- MACF1
- NCBP2

Pre-, post- and transcriptional regulation of gene expression
- KIP5B

Cell cycle and DNA repair
- AP2M1
- CEL1
- TAF5
- SNAP23
- RPL8
- NUP210
In general changes on the microRNA level are not as persistent as on the mRNA level and are therefore more dynamic since they are much more dependent on the circumstances within a cell.

4 miRNAs are persistently expressed, of which two could be assigned to the network.

Transcription of the persistently expressed microRNA hsa-miR-34b-5p has been shown to be directly induced by p53 in response to genotoxic stress, acting upon downstream targets to promote cell cycle arrest or apoptosis. In several in vitro cells models, increased expression of hsa-miR-34b-5p was observed following exposure to other genotoxic stressors (e.g. cyclo-phosphamide and benzo(a)pyrene. Hsa-miR-34b-5p is furthermore able to affect hundreds of genes involved in tumor development, among for example HCC.
Identification of regulatory miRNA-gene interactions

- Upregulation of the persistently induced microRNA, hsa-miR-222-3p, has been frequently observed following exposure to genotoxic stress (e.g. arsenic, TPA (12-O-tetradecanoylphorbol-13-acetate), particulate matter (PM10), bisphenol A, cyclo-phosphamide) in a numerous amount of in vitro as well as in vivo models. Deregulation of this oncogenic microRNA within HCC may result in promoted growth, clonogenic survival, migration and invasion of HCC cells.

→ the persistent expression pattern of these particular microRNAs might be indicative for the early onset of AFB1-induced HCC.
Identification of regulatory miRNA-gene interactions

PSMC4-hsa-miR-222-3p:
- Proteasome (prosome, macropain) 26S subunit, ATPase, 4 (PSMC4), a 26S proteasome regulated by persistently expressed hsa-miR-222-3p, is a multicatalytic proteinase complex with a highly ordered structure.
- Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway.
- In HCC, an enhanced activation of protein degradation mechanisms has been observed.
- Selective degradation of critical proteins, including cell cycle inhibitors, may lead to increased cell proliferation important in HCC. Persistent microRNA-directed regulation of PSMC might therefore be important in the AFB1-induced onset of HCC.
Identification of regulatory miRNA-gene interactions

BIRC3-hsa-miR-34a-5p:

- baculoviral IAP repeat containing 3 (BIRC3), directed by newly emerging hsa-miR-34a-5p, codes for a multi-functional protein involved in the inhibition of apoptosis, inflammatory signaling and immunity, mitogenic kinase signaling and cell proliferation, as well as cell invasion and metastasis in HCC.
- Persistent upregulation of microRNA-directed BIRC3 may therefore be very informative for the early onset of AFB1-induced HCC.
Identification of regulatory miRNA-gene interactions

Persistent effects
MicroRNA
- hsa-miR-222-3p

A priori known
HCC related genes
- MACF1

Drug and energy
metabolism
- BIRC3
- TXNRD1
- CHML
- EVIL
- ACTB
- RPL27A

Novel
HCC related genes
- KIF5B
- WDR77
- MACF1
- NCBP2

Reversible effects
MicroRNA
- hsa-miR-161b-5p
- hsa-miR-130b-3p
- hsa-miR-224-3p
- hsa-miR-30a-3p
- hsa-miR-34a-5p

A priori known
HCC related genes
- hsa-miR-555-3p
- hsa-miR-1266b
- hsa-miR-96-5p

New effects
microRNA
- hsa-miR-34b-5p

MACF1-hsa-miR-222-3p:
- Microtubule-actin crosslinking factor 1 (MACF1), a large protein containing numerous spectrin and leucine-rich repeat (LRR) domains regulated by persistently expressed hsa-miR-222-3p, is a member of a family of proteins that form bridges between different cytoskeletal elements e.g. actin-microtubule interactions. It therefore has a role in cell migration.
- Furthermore, MACF1 is involved in Wnt-induced TCF/β-catenin-dependent transcriptional activation leading to increased expression of Wnt-responsive genes.
- Aberrant activation of the canonical Wnt/beta-catenin signaling pathway is an important contributor to tumorigenesis.
- In this study AFB1-induced persistently expressed MACF1, directed by hsa-miR-222-3p, might be crucial for the onset of HCC considering its role in the cancer-related Wnt signaling pathway.
A) 2 persistently hypermethylated - downregulated genes and B) 16 persistently hypomethylated – upregulated genes, following 5 days of exposure to 0.3 µM of AFB1 and 3 days of wash-out.

<table>
<thead>
<tr>
<th>Entrez Gene ID</th>
<th>Gene name</th>
<th>FC 5D</th>
<th>p-val 5D</th>
<th>FC WO</th>
<th>p-val WO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10974</td>
<td>ADIRF</td>
<td>-1.7305</td>
<td>0.0021</td>
<td>-2.1523</td>
<td>0.0000</td>
</tr>
<tr>
<td>6768</td>
<td>ST14</td>
<td>-1.5584</td>
<td>0.0055</td>
<td>-1.5868</td>
<td>0.0002</td>
</tr>
<tr>
<td>5111</td>
<td>PCNA</td>
<td>2.1010</td>
<td>0.0044</td>
<td>1.7179</td>
<td>0.0000</td>
</tr>
<tr>
<td>7296</td>
<td>TXNRD1</td>
<td>2.2622</td>
<td>0.0031</td>
<td>1.6844</td>
<td>0.0000</td>
</tr>
<tr>
<td>8812</td>
<td>CCNK</td>
<td>1.6374</td>
<td>0.0021</td>
<td>1.5481</td>
<td>0.0000</td>
</tr>
<tr>
<td>81624</td>
<td>DIAPH3</td>
<td>1.6981</td>
<td>0.0125</td>
<td>1.5173</td>
<td>0.0002</td>
</tr>
<tr>
<td>5874</td>
<td>RAB27B</td>
<td>2.7440</td>
<td>0.0029</td>
<td>2.7740</td>
<td>0.0000</td>
</tr>
<tr>
<td>8343</td>
<td>HIST1H2BF</td>
<td>2.5235</td>
<td>0.0025</td>
<td>1.8298</td>
<td>0.0000</td>
</tr>
<tr>
<td>8351</td>
<td>HIST1H3D</td>
<td>3.5308</td>
<td>0.0018</td>
<td>2.7170</td>
<td>0.0000</td>
</tr>
<tr>
<td>5678</td>
<td>PSG9</td>
<td>1.9268</td>
<td>0.0125</td>
<td>1.8668</td>
<td>0.0030</td>
</tr>
<tr>
<td>84675</td>
<td>TRIM55</td>
<td>1.6709</td>
<td>0.0045</td>
<td>1.8220</td>
<td>0.0000</td>
</tr>
<tr>
<td>51232</td>
<td>CRIM1</td>
<td>1.7854</td>
<td>0.0066</td>
<td>1.7126</td>
<td>0.0001</td>
</tr>
<tr>
<td>169792</td>
<td>GLIS3</td>
<td>1.7870</td>
<td>0.0035</td>
<td>1.6761</td>
<td>0.0000</td>
</tr>
<tr>
<td>90627</td>
<td>STARD13</td>
<td>1.7390</td>
<td>0.0031</td>
<td>1.6230</td>
<td>0.0000</td>
</tr>
<tr>
<td>196</td>
<td>AHR</td>
<td>1.8178</td>
<td>0.0398</td>
<td>1.5874</td>
<td>0.0032</td>
</tr>
<tr>
<td>11167</td>
<td>FSTL1</td>
<td>1.7953</td>
<td>0.0019</td>
<td>1.5646</td>
<td>0.0001</td>
</tr>
<tr>
<td>3486</td>
<td>IGFBP3</td>
<td>1.7002</td>
<td>0.0027</td>
<td>1.5607</td>
<td>0.0000</td>
</tr>
<tr>
<td>9173</td>
<td>IL1RL1</td>
<td>2.1095</td>
<td>0.0064</td>
<td>1.5003</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

- DNA damage response
- Cell growth
- Metastatic events
Conclusions

- By applying integrative cross-omics analyses to an innovative cell model in a repeated dose regime, we have unraveled molecular networks persistently affected by prototypical toxicants
 - VPA and AFB1 in the liver model
 - Doxorubincine in the heart model
 - Ochratoxin and potassium bromide in the kidney model
- Promising biomarkers for repeated dose toxicity in humans have been identified
- Follow-up is required which in particular consider
 - Larger numbers of chemicals for training and validating the predictive models
 - Physiologically relevant doses
 - Translation to molecular human disease signatures
Acknowledgements

Maastricht University
Department of Toxicogenomics

- Simone van Breda
- Theo de Kok
- Sandra Claessen
- Marcel van Herwijnen
- Karen Brauers
- Daniël Theunissen
- Danyel Jennen
- Linda Rieswijk

DETECTIVE partners and contributors

- Paul Jennings (IMU)
- Alice Limonciel (IMU)
- Agapios Sachinidisi (UKK)
- Umesh Chaudhari (UKK)
- Hector Keun (IC)
- Jim Ellis (IC)
- Mathieu Vinken (VUB)
- Robim Rodrigues (VUB)
- Vera Rogiers (VUB)
- Laxmikanth Kollipara (ISAS)
- Albert Sickman
- Jan Hengstler (IFADO)
- Andre Schrattenholz (PSY)